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A Markov Decision Process (MDP) policy presents, for each state, an action, which preferably maximizes the
expected utility accrual over time. In this article, we present a novel explanation system for MDP policies.
The system interactively generates conversational English-language explanations of the actions suggested
by an optimal policy, and does so in real time. We rely on natural language explanations in order to build
trust between the user and the explanation system, leveraging existing research in psychology in order to
generate salient explanations. Our explanation system is designed for portability between domains and uses
a combination of domain-specific and domain-independent techniques. The system automatically extracts
implicit knowledge from an MDP model and accompanying policy. This MDP-based explanation system can
be ported between applications without additional effort by knowledge engineers or model builders. Our
system separates domain-specific data from the explanation logic, allowing for a robust system capable of
incremental upgrades. Domain-specific explanations are generated through case-based explanation tech-
niques specific to the domain and a knowledge base of concept mappings used to generate English-language
explanations.
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1. INTRODUCTION

A Markov decision process (MDP) is a mathematical formalism which allows for long-
term planning in probabilistic environments [Bellman 1957; Puterman 1994]. A policy
for an MDP is a mapping of states to actions that defines a tree of possible futures,
each with a probability and a utility. “Utility” is sometimes called “reward” in the
literature [Puterman 1994]; we choose to use the term utility in this article. In order
for a user to evaluate the usefulness of a policy, they must take into account every
possible sequence of states that could arise from following the optimal actions laid out
by the policy, and the likelihoods and utilities of those sequences. Unfortunately, this
set of possible futures is a large object with many potential branches that is difficult
to understand, even for sophisticated users. The complex nature of possible futures
and their probabilities prevents many end users from trusting, understanding, and
implementing the plans generated from MDP policies [Khan et al. 2011].

This is a known issue: recommendations and plans generated by computers are not
always trusted or implemented by end users of decision support systems. Distrust
and misunderstanding are two of the most often user cited reasons for not following
a recommended plan or action [Murray and Häubl 2008]. For a user unfamiliar with
stochastic planning, the most troublesome part of existing explanation systems is the
explicit use of probabilities, as humans are demonstrably bad at reasoning with proba-
bilities [Tversky and Kahneman 1974]. Additionally, it is our intuition that the concept
of a preordained probability of success or failure at a given endeavor discomfits the av-
erage user.

In this article we present an explanation system for MDP policies which attempts
to address the issues inherent to evaluation of MDP policies by non-technical users.
Specifically, in this work, we focus on advising undergraduate students at a large
university on what courses to select in the coming semester(s). Our system produces
explanations in conversational English, generated from domain-specific and domain-
independent information, to convince end users to implement the recommended ac-
tions. Our system generates arguments that are designed to convince the user of the
“goodness” of the recommended action, according to the given utility function—which
can be tuned to that user. While the logic of our arguments is generated in a domain-
independent way, there are domain-specific data sources included. These are decoupled
from the explanation interface to allow a high degree of customization. This allows our
base system to be deployed to different domains without additional information from
the model designers. If an implementation calls for it, our system is flexible enough to
incorporate domain-specific language and cases to augment its generated arguments.
We implement this novel argument-based approach with conversational English text
in order to closely connect with the user. Building this trust is essential in convincing
the user to implement the policy set out by the MDP [Murray and Häubl 2008]. Thus,
we avoid exposing the user to the specifics of stochastic planning, though we cannot
entirely avoid language addressing the inherent probabilistic nature of our planning
system.

Following the classifications of logical arguments and explanations given by Moore
and Parker [2008], our system generates arguments. While we, as system design-
ers, are convinced of the optimality of the optimal action, the user may not be. In
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Explanation Generation in MDPs 18:3

an explanation, however, two parties agree about the truth of a statement and the
discussion is centered around why the statement is true. As our system design is at-
tempting to convince the user of the “goodness” of the recommended action; this is an
argument.

Our system has been developed as a piece of a larger research program working
with advising college students about what courses to take and when to take them.
It was tested on a subset of a model developed to predict student grades based on
anonymized student records, as well as capture student preferences and institutional
constraints at the University of Kentucky [Guerin and Goldsmith 2011]. Our system
presents, as a paragraph, an argument as to why a student should take a specified
set of courses in the next semester. The underlying policy can be tailored to the
student’s preferences and abilities. This domain is interesting because it involves
users who need to reason in discrete time steps about their long term benefits.
Beginning students at a university will have limited knowledge about utility theory
and represent a good focus population for studying the effectiveness of different
explanations.

Model construction, verification, and validation is an extremely rich subject that
we do not treat throughly in this article. We detail the model employed for the user
studies conducted on our system in Section 3 but we do not provide a full description
of how the model was constructed. While the quality of explanations is dependent
on the quality and accuracy of a given model, we will not discuss modeling accuracy
or fidelity in great detail. The purpose of this work is to generate arguments in a
domain-independent way, incorporating domain-specific information only to generate
the explanation language. We have taken care to construct a model that has basis in
reality and we refer the reader to our other publications for a more complete treatment
of the subject [Guerin and Goldsmith 2011].

In the next section we will provide background on MDPs and a brief overview of
current explanation systems. In Section 3 we define the model we use as an example
domain. Section 4 provides an overview of the system design as well as specific details
about the system’s three main components: the model based explainer, the case based
explainer, and the English-language template populator. Section 6 provides examples
of the output of our system and an overview of the user study used to verify and vali-
date our approach. Section 7 provides some conclusions about the system development
so far and our main target areas for future study.

2. BACKGROUND AND RELATED WORK

In our own department, we have seen excellent advising, but also many students who
shun advice. It is common, in the latter group, that they arrive at what they hope to be
their last semester with an impossible load of required courses. This might be impos-
sible due to scheduling; not all classes are offered every semester, and some coincide.
Or it might be impossible because they need too many credits, too many large projects,
and too many concurrent courses that are best taken sequentially.

Based on many years of experience and observation in advising, we can say that
long-term planning is crucial to student success. It is necessary that students take
unpopular or challenging courses early in their careers in order to maintain sufficient
progress towards their degrees. It is also important that students actually master the
basics, possibly through repeating courses, before moving on to the more enticing top-
ics. Thus, we argue that a long-term view is often necessary for students’ academic
success. Furthermore, that long-term view must take into account the possibilities
of success and failure, and allow sufficient leeway for course repetition or direction
change.
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2.1. Markov Decision Processes

A MDP is a formal model for planning, when actions are modeled as having probabilis-
tic outcomes. We focus here on factored MDPs [Boutilier et al. 1999]. MDPs are used
in many areas, including robotics, economics and manufacturing.

Definition 2.1. An MDP is a tuple, 〈S, A, T, R〉, where S is a set of states and A is
a set of actions, and T(s′|s, a) is the probability that state s′ is reached if a is taken
in state s, and R(s) is the utility, or reward, of being in state s. If states in S are
represented by variable (attribute) vectors, we say that the MDP is factored.

A policy for an MDP is a mapping π : S → A. The optimal policy for an MDP is one
that maximizes the expected value (Definition 2.2) [Puterman 1994] within a specified
finite or infinite time horizon, or with a guarantee of (unspecified) finiteness [Hansen
2007]. In the case of academic advising, since credits become invalid at the Univer-
sity of Kentucky after 10 years, we assume a fixed, finite horizon [Bellman 1957].
Policies are computed with respect to the expected total discounted utility, where the
discount rate γ is such that 0 ≤ γ < 1. The optimal policy with respect to discount
γ is one that maximizes the total discounted expected utility of the start state (see
Definition 2.2) [Bellman 1957; Puterman 1994].

Definition 2.2. The expected value of state s with respect to policy π and discount
γ is

Vπ (s) = R(s) + γ
∑
s′∈S

T(s′ | π(s), s) · Vπ (s′). (1)

The optimal value function V∗ is the value function of any optimal policy π∗ [Bellman
1957; Puterman 1994]. We use the optimal policy, and other domain and model infor-
mation, to generate conversational English explanations for users with no knowledge
of probability or utility theory.

MDPs have been successfully deployed in other domains. An MDP model, deployed
to an online bookstore, was found to generate recommendations which outperformed
commercially available collaborative filtering methods in successfully recommending
items to users [Shani et al. 2005]. In another study, it was found that users of a va-
cation planning website were more inclined to follow recommendations generated by
an MDP than a linear policy, resulting in a more efficient search session for the user
[Mahmood et al. 2009]. MDP methods are, however, not without drawbacks. The costs
for considering long-term expected utility, for building policies instead of plans, is com-
plexity: computational complexity in computing those policies, and complexity in trac-
ing the effects and benefits of recommended actions. There has been considerable work
on the planning side of factored MDPs, which we will not survey here. What we ad-
dress in this article are algorithms developed to reason about the effects and benefits
of actions recommended by an MDP policy.

2.2. Other Planning Methods

There are myriad academic advising software packages available, with varying func-
tionality. Some are degree audit programs, which tell students which requirements
they have or have not met for their program. Some are constraint solvers that come up
with schedules for one or more semesters. However, most software is simply a list of
courses the student should take, either for a single semester, or for their career. Almost
none of them look at the likelihood of success in particular courses.

There is a new trend that may look at statistical predictions of success, the so-called
Netflix-style advising, at Austin Peay State University and elsewhere [Young 2010]. In

ACM Transactions on Interactive Intelligent Systems, Vol. 3, No. 3, Article 18, Pub. date: October 2013.



�

�

�

�

�

�

�

�

Explanation Generation in MDPs 18:5

this model, collaborative filtering is used on prior student records to match students
with others who had similar records, and to suggest courses that the others took. This
can even be modified by taking into account the advisees’ preferences [Ray and Sharma
2011].

None of these methods are comprehensive decision-theoretic planners. Few give
long-term plans, much less policies. Even the collaborative-filtering methods appear
to look at most-likely-to-succeed choices, rather than weighing the utility of courses by
the likelihood of success.

Case-based planning methods maintain a library of plans, that is, static action se-
quences, which are retrieved based on some similarity metric. While case-based plan-
ning is, in some limited cases, computationally easier than other planning methods
[Liberatore 2005], adapting the retrieved plans for a novel case requires the applica-
tion of more complicated algorithms, such as artificial neural networks [Paz et al. 2009]
or a mixture of domain-specific heuristics, constraint satisfaction, and intervention by
a domain expert [Avesani et al. 2000].

2.3. Explanation in Recommender Systems

The bulk of the existing work regarding explanation of the outcomes of recommender
systems is in the domain of e-commerce, which makes extensive use of collaborative fil-
tering (CF) algorithms. Sinha and Swearingen [2002] found that to satisfy most users,
recommender systems employing CF methods must provide not only good recommen-
dations, but also the logic behind a particular recommendation. This is excessive in
the case of MDP policies. The fully transparent explanation for the recommendation
generated by an optimal MDP policy is that the action maximizes long-term expected
utility, assuming correctness of the utility function for the domain. Herlocker [1999]
proposes a “Data-Explorative” model of explanation, in which the recommendation is
explained by highlighting key data. In the context of a policy, the only data available
are the utility function used to generate that policy and the optimal value function
which accompanies the policy. This motivates us to attempt to decompose the utility of
the recommended action in some way that allows the user to more easily understand
why a particular action is recommended at a given step. A truly data-explorative ex-
planation model would then allow the user the freedom to explore “what-if” scenarios,
moving step-by-step through their career. Indeed, as we will see in our user study
(Section 6.1), Herlocker et al.’s model of explanation is a desirable feature according to
the test users of our system. Therefore, our user study, to some degree, validates the
work of Herlocker et al.

Because we are seeking a domain-independent method for generating explanations,
and because CF is itself domain-independent, the classification of explanation systems
for existing recommender systems provided by Tintarev and Masthoff [2007, 2011] is
very instructive. As in the CF case, the challenge is to consider the tradeoffs between
different and contradictory explanation goals [Tintarev and Masthoff 2011]. In the case
of this particular system, transparency, which seeks to explain how the system works,
is sacrificed in order to enhance effectiveness (helping users make good decisions) and
persuasiveness (convincing users to accept the recommendation of the system). Such a
system is more specifically termed an argumentation system, as a goal of persuasive-
ness implies that the parties involved are not in agreement regarding the optimality
of the action in question [Moore and Parker 2008].

Prior work on natural language explanation of MDP policies is sparse, and has
focused primarily on what could be called “policy-based explanation,” whereby the
explanation text is generated solely from the policy. The nature of such systems limits
the usefulness of these explanations for users who are unfamiliar with stochastic
planning, as the information presented is probabilistic in nature. However, these
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algorithms have the advantage of being entirely domain-independent. A good example
of such a system is Khan et al.’s minimal sufficient explanations [Khan et al. 2011],
which decomposes the utility of the recommended action in the current state in terms
of the expected occupancy frequencies of desired future scenarios (partial assignments
of state variables). Explanations are then presented as a set of sentence templates
populated by action and variable names.

Definition 2.3. [Khan et al. 2009] The occupancy frequency of state s′, starting in
state s0 and executing policy π is

λπ
s0

(s′) = δ(s′, s0) + γ
∑
s∈S

T(s′ | π(s), s) · λπ
s0

(s), (2)

where

δ(s1, s2) =
{

1, s1 = s2
0, s1 
= s2

Definition 2.4. [Khan et al. 2009] The occupancy frequency of scenario sc starting
in state s0 is

λπ
s0

(sc) =
∑
s∈sc

λπ
s0

(s). (3)

An example of an explanation of this form, in which only one rewarding scenario
need be considered is, taken verbatim from [Khan et al. 2009]:

Action TakeCS343 & CS448 is the best action because: It is likely to take
you to CoursesCompleted = 6, TermNumber = Final about 0.86 times, which
is as high as any other action.

Each rewarding scenario corresponds to an explanation template of a similar form,
which can be thought of as representing part of the expected value of taking the rec-
ommended action from the current state, that is, the action-value function Q(s, a)
[Sutton and Barto 1998]. While this particular explanation consists of only a single
template, in general the full explanation for π∗(s) consists of the minimum num-
ber of templates required to explain some portion of the utility, VMSE, such that
Q(s, π∗(s)) ≥ VMSE > Q(s, a), ∀a 
= π∗(s) [Khan et al. 2011]. We refer to an approach
such as this, which focuses on explaining some suitable portion of the utility function,
as a “most coverage” approach.

Note that, while the algorithms used in policy-based explanation systems are
domain-independent, the explanations generated by such systems often rely on the
implicit domain-specific information encoded into the model in the form of action and
variable names. While this particular explanation could be improved by substitution
of more accessible phrasing in place of variable names and occupancy frequencies, the
system designers chose to publish explanations of the form presented earlier.

Other work has focused on finding the variable which is most influential to deter-
mining the optimal action at the current state [Elizalde et al. 2009], while using an ex-
tensive knowledge-base to translate these results into natural language explanations.

Case-based and model-based explanation systems rely, to different extents, on do-
main specific information. To find literature on such systems, it is necessary to look
beyond stochastic planning. Case-based explanation, which uses a database of prior
decisions and their factors, called a case base, is more knowledge-light, requiring only
the cases themselves and a model detailing how the factors of a case can be generalized
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Fig. 1. The dynamic decision network (temporal dependency structure) for the academic advising model.
Course grades are influenced by the current grade for that course (if any) and grades for courses that have
an arc from t to t + 1.

to arbitrary cases. Care must be taken in constructing a case base in order to include
sufficient cases to cover all possible inputs. Nugent et al.’s KLEF [Nugent et al. 2009]
is an example of a case-based explanation system. A model-based explanation system,
however, relies on domain-specific information, in the form of an explicit explanation
model [Brüninghaus and Ashley 2003].

3. MODEL

For this article we focus on an academic advising domain. For the purposes of testing
our methods, we use restricted domains which focus on completing courses to achieve
computer science and psychology minors at the University of Kentucky. Note that
while both models were tested in the user study (Section 6), we will use the computer
science model as the example model when detailing our methods. Our research group
is also developing a system to automatically generate complete academic advising do-
mains that capture all classes in a university [Guerin and Goldsmith 2011]. The long
term goal of this ongoing research project is to develop an end-to-end system to aid
academic advisors that builds probabilistic grade predictors (e.g., Anthony and Raney
[2012]), models student preferences, plans, and explains the offered recommendations.

The variables in our factored domain are the required courses for a minor focus in
computer science: Intro Computer Programming (ICP), Program Design and Problem
Solving (PDPS), Software Engineering (SE), Discrete Mathematics (DM), and Algo-
rithm Design and Analysis (ALGO). We include Calculus II (CALC2) as a predictor
course for DM and ALGO due to their strong mathematical components. Each class
variable can have values: (G)ood - corresponding to A or B, (P)ass - corresponding to C,
(F)ail - corresponding to D or F, and (N)ot Taken. An additional variable is high school
grade point average, HSGPA; this can have values: (G)ood, (P)ass, (L)ow. The model
was hand coded with transition probabilities derived from historic course data at the
University of Kentucky.

ACM Transactions on Interactive Intelligent Systems, Vol. 3, No. 3, Article 18, Pub. date: October 2013.
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Each action in our domain is of the form, “Take Course X,” and only directly affects
variable X. Figure 1 shows the temporal dependencies between classes, and implicitly
encodes the set of prerequisites due to the near certain probability of failure if pre-
requisite courses are not taken first. Complex conditional dependences exist between
courses due to the possibility of failing a course. CALC2 is not required and we do not
place utility on its completion. Taking it correlates with success in DM and ALGO; we
want to ensure our model can explain situations where variables with no utility are
important. Most courses in the model have high school GPA (HSGPA), the previous
class, and the current class as the priors (except ICP and CALC2, which only have
HSGPA as a prior).1

The utility function is additive and places a higher utility value on earning higher
grades. The model places a value of 4.0 and 2.0 on Good and Passing grades respec-
tively, while failure is penalized with a 0.0. A discount factor of 0.9 is used to weight
early success more than later success. While our current utility function only focuses
on earning the highest grades possible as quickly as possible (where quickness is en-
forced with a relatively strong discount factor of 0.9), we stress that our overall system
does not depend on this choice of the utility function. Any additive utility function can
be expressed within the underlying MDP and this utility function is used for both poli-
cies and explanations. Other utility functions are, in fact, being developed as part of
our larger academic advising research project. We hope to be able to eventually cap-
ture student preferences over things like the time of day a course occurs and current-
semester course loading as well as outcome based utilities such as content mastery
and GPA in terms of an additive utility function within our MDP. Our particular util-
ity function simply represents what we believe, based on experiences with students
and results from our user study, to be a “least common denominator” of preference
among entry-level students. Specifically, it represents a preference for graduation as
soon as possible, with a higher GPA being preferable to a lower GPA. We find that
most (but not all) students share this baseline preference and therefore, we use it for
our testing.

Our particular treatment of utility makes a number of (possibly naı̈ve) simplifying
assumptions. We understand that a more complete treatment of student utility is a
requirement for actual deployment of a decision-theoretic advising system. Properly
integrating trade-offs between time to graduate, courses taken (or skills mastered),
and grades earned is one dimension of such a treatment. Along with our investigation
of explanations for decision-theoretic planning, acquisition and modeling of more com-
plete models of utility and state transition are being developed as a part of the larger
goal of our advising project (e.g., [Guerin and Goldsmith 2011; Guerin et al. 2012]).
We discuss some of these related issues in Section 6.1, however we believe that a more
thorough and formal treatment of utility is outside the scope of this article.

Transition probabilities for the model were generated by looking at data from many
years of computer science or psychology courses, respectively. This past grade assign-
ment data was converted into a transition model (probability of passing any given
course given grade assignments in previous courses) for all possible combinations
[Guerin and Goldsmith 2011]. The model was encoded using a variant of the SPUDD
format [Hoey et al. 1999] and the optimal policy was found using a local SPUDD im-
plementation developed in our lab [Hoey et al. 1999; Mathias et al. 2006]. We applied a
horizon of 10 steps (since credits disappear after about 10 semester) during planning.
The model has about 2,400 states (all possible combinations of course grades) and the

1High school GPA is a strong predictor of early college success (and college graduation) [Camara and
Echternacht 2000].
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Fig. 2. The system organization and data flow: independent data sources feed into the reasoning modules
that generate our arguments. The results of the argument generation modules are fed into the English
Template Populator (ETP) module which combines the arguments with context specific information.

optimal value function has over 10,000 possible terminating configurations and 15,000
possible action paths to a terminating assignment.

4. SYSTEM OVERVIEW

Our explanation system integrates a policy-based approach with case-based and MDP-
based algorithms. However, the MDP-based system is constructed so the algorithm
itself is not domain-specific. Rather, the explanation model is constructed from the
MDP and resulting policy and relies on domain-specific inputs and domain-specific
language in the English-language template populator module only. Thus, we isolate
the domain-specific factors, giving our methods high portability between domains.

Figure 2 illustrates the data flow through our system. All domain-specific informa-
tion has been removed from the individual modules. We think of each of the modules
as generating points of our argument while the English-language template populator
assimilates all these points into a well structured argument to the user. The assim-
ilated argument is stronger than any of the individual points. However, we can re-
move modules that are not necessary for specific domains, for instance, when a case
base cannot be procured. This allows our system to be flexible with respect to a single
model and across multiple domains. In addition, system deployment can happen early
in a development cycle while other “points” of the argument are brought online. The
novel combination of a case-based explainer, which makes arguments from empirical
past data, with a MDP-based explainer, which makes arguments from future predicted
data, allows our system to generate better arguments than either piece alone.

ACM Transactions on Interactive Intelligent Systems, Vol. 3, No. 3, Article 18, Pub. date: October 2013.
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For example, after all processing has been complete our system generates explana-
tions similar to the following.

The recommended action is taking Introduction to Program Design and
Problem Solving, generated by examining possible future courses. It is
the optimal course with regards to your current grades and the courses
available to you. Our model indicates that this action will best prepare you
for taking Introduction to Software Engineering and taking Discrete Math-
ematics in the future. Additionally, it will prepare you for taking Algorithm
Design and Analysis. Our database indicates that with either a grade of A
or B in Introductory Computer Programming or a grade of A or B in Cal-
culus II, you are more likely to receive a grade of A or B in Introduction to
Program Design and Problem Solving, the recommended course.

The first two sentences contain an explanation of what the system is going to be
doing in order to build some trust with the user [Sinha and Swearingen 2002]. The
argument in the next two sentences comes strictly from the MDP model and the MDP
policy fed to the recommendation system. The last two sentences contain information
from the case-base only. The arguments generated from the MDP components and the
case-base components are then fed through our template populator in order to generate
English language explanations for the users. In the next several sections we will detail
the inner workings of each of the components and how they fit together to create highly
convincing arguments on behalf of the optimal policy.

A standard use case for our system would proceed as follows: students would access
the interface either online or in an advising office. The system would elicit user pref-
erences and course histories (these could also be gleaned from student transcripts).
Currently our system can only take in what grades students have in courses. We plan
to augment the system with the ability to capture important user preference data as
suggested in our user study (see Section 6.1). Once this data has been provided to the
system, a explanation, in conversational English, would explain what courses to take
in the coming semester. While our current model recommends one course at a time, we
will expand the system to include multiple actions per time step.

4.1. MDP-Based Explanation

Many studies have shown empirically that humans use a hyperbolic discounting func-
tion and are incredibly risk adverse when reasoning about long term plans under un-
certain conditions [Frederick et al. 2002; Tversky and Kahneman 1992]. A hyperbolic
discounting function can make preference reversals possible: a user may prefer a dif-
ferent course of action before long term rewards have been realized [Read 2004]. We
want to avoid this problem: if we highlight short and intermediate term rewards, we
may be able to convince students to stick with the plans selected with the support of
the system.

In contrast to human reasoning, an MDP uses an exponential discount function
when computing optimal policies. Preference reversals cannot occur with an exponen-
tial discounting function, but we may still encounter other problems. Humans may not
place appropriate discounts on their short and long term rewards; a classic example
of this is investing in personal retirement plans. Many people know that, in order to
maximize their long term utility they should save for retirement (large, long term re-
ward), but that new flat screen TV would be great to have now (smaller, short term
reward). Students may not be correctly accounting for future rewards; we want them
to understand that some actions have very high valued rewards that are not realized
in the short term.
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The combined effects of human inability to think rationally in probabilistic terms
and hyperbolic discounting of future utility means there is often a fundamental
disconnect between the human user and the rational policy [Frederick et al. 2002;
Tversky and Kahneman 1974]. The disconnect between the two reasoning methods
must be reconciled in order to communicate MDP policies to human users in terms
that they will more readily understand and trust.

The MDP-based explanation module extracts information from the MDP model of
the domain and a policy of recommended actions for that model. It attempts to trans-
late the reasoning method of the MDP to the reasoning method of the human user
by explaining the long term plan in terms of short term gains. Specifically, the mod-
ule outputs information about why, in terms of actions at the next decision point, the
recommended action is best at the current decision point.

In order to facilitate comparing actions in this way, we will define an object which is
the decrease in the value of taking the action a in timestep t + 1 if some action ai is
taken instead of π(s) in timestep t. This object is called the action-factored differential
value (AFDV) of a following ai (at state s under some policy π ), �π(s, π , ai, a). This
object is simply the difference in the expected utility of executing π and the expected
utility of deviating from π by executing ai in the current state.

AFDVs allow us to explain the optimal action in terms of how much better the set of
actions at the next state are. For example, if π(s) = act ICP, and we compute that the
action-factored differential values of act PDPS following any other ai are all negative,
we can point out that taking ICP before PDPS is better because taking ICP first
improves the expected value of taking PDPS in the next time step more than any
other action. We can also highlight how the current action can affect multiple future
actions and utilities by considering different actions at timestep t + 1. This allows
our method to explain complex conditional policies without explicit knowledge of the
particular conditional. Through the computation of the AFDVs we are able to extract
how the current best action improves the utility associated with taking one or more
future actions. This method allows for a salient explanation that focuses on how the
current best action will improve actions and immediate utility in the next state.

To generate a usable set of AFDVs from some state s, we first define a method for
measuring the value of taking an arbitrary two action sequence and then continuing
to follow the given policy, π . Intuitively, a set of AFDVs is a set of two-step look ahead
utilities for all the different possible combinations of actions and results. This is accom-
plished by modifying the general expression for Vπ to accommodate deviation from the
policy in the current state and the set of next states:

Vπ
2 (s, a1, a2) − R(s) = γ

∑
s′∈S

T(s′|s, a1) · [ R(s′) + γ
∑
s′′∈S

T(s′′|s′, a2) · Vπ (s′′)] . (4)

Using Vπ
2 , we can then compute a single AFDV object for a following ai instead of π(s)

by computing the values of the two-step sequences {π(s), a} and {ai, a} and taking the
difference,

�π(s, π , ai, a) = Vπ
2 (s, π(s), a) − Vπ

2 (s, ai, a). (5)

To compute a full set of AFDVs for explanation, this computation is done for all a ∈ A
(since we would like to consider an arbitrary action in timestep t + 1) and for all ai ∈
A \ π(s) (since �π(s, π , π(s), a) is identically 0).

In order to choose actions for explanation, we count, for each next-step action a ∈ A,
the number of initial actions ai ∈ A \ π(s) for which �π(s, π , ai, a) is negative. We
therefore define

xπ
s (a) = |{i : �π(s, π , ai, a) < 0}| (6)
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as the number of actions in the current state, s, which cause a greater increase in
utility of the action a than the recommended action.

Note that we may have for all a ∈ A : xπ∗
s (a) > 0, since by definition

∑
a∈A

�π∗
(s, π∗, π∗(s), a) >

∑
a∈A

�π∗
(s, π∗, ai, a) ∀ai 
= π∗(s). (7)

That is, only the sum of the AFDV set is is guaranteed to be maximal for the optimal
action.

We choose the subset of A for which xπ
s (a) is minimal as our explanation actions, and

explain π(s) in terms of its positive effects on those actions. We could also decompose
the actions into corresponding variable assignments and explain how those variables
change, leading to higher utility. By focusing on actions we reduce the overall size of
the explanation in order to avoid overwhelming the user, while still allowing the most
salient features of the recommended action to be preserved. While our intuition is that
reducing the overall length of the explanation is desirable, if a system designer wanted
to present more explanation actions, another subset of A can be chosen for which xπ

s (a)
is greater than the minimum, but less than any other value. While the current method
of choosing explanation actions relies on knowledge of the optimal policy, the AFDV
objects are meaningful for any policy. However, our particular method for choosing the
subset of AFDVs for explanation relies on the optimality of the action π(s), and would
have to be adapted for use with a heuristic policy.

For example, the explanation primitive for a set of future actions with π(s) =
act PDPS, xπ

s (act SE) = xπ
s (act DM) = 0, xπ

s (act ALGO) = 1, and xπ
s (a) = 2 for all

other a is the following.

The recommended action is act PDPS, generated by examining long-term
future benefits. It is the optimal action with regards to your current state
and the actions available to you. Our model indicates that this action will
best prepare you for act SE and act DM in the future. Additionally, it will
prepare you for act ALGO.

Algorithm 1 presents the algorithm for computing Vπ
2 (s, a1, a2). It relies on a func-

tion particular to the implementation, APPLYACTION, which takes a state and an ac-
tion and returns the set of possible next states and their associated probabilities. In
general, APPLYACTION is linear in the size of the state-space, however, in a factored
MDP, it can be easily precomputed for each action. In the worst case, the function
Vπ

2 (s, a1, a2) is in O(|S|2).
Algorithm 2 presents the algorithm for computing the actions for explanation. If

computing the two-step lookahead values is in O(|S|2), then this algorithm is in
O(|S|2|A|2), as it loops over all actions except the recommended action in the current
timestep for every possible action in the next timestep.

It is possible to construct pathological domains where our domain-independent ex-
plainer cannot find a suitable action for explanation. In these rare cases, the explainer
will default to stating that the action prescribed by the given policy is the best because
it leads to the greatest expected utility; this prevents contradictions between the ex-
planation and policy. The AFDV method will break down if domains are constructed
such that the expected utility is 0 within the horizon (2 time steps). This can happen
when there are balanced positive and negative utilities. For this reason, we currently
restrict our domain independence claims to those domains with only non-negative util-
ities. This, however, is not a significant restriction, as the utility function can always
be rescaled by an arbitrary constant.
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Algorithm 1 Compute Vπ
2 (s, a1, a2)

Require: R(s), π(s), Vπ ∈ O(1)
� ← 0
S′, P′ ← APPLYACTION(a1, s)
for all s′ ∈ S′ do

σ ← 0 {temporary variable to sum over the inner s′′ loop}
S′′, P′′ ← APPLYACTION(a2, s′)
for all s′′ ∈ S′′ do

σ ← σ + P′′(s′′) × Vπ (s′′)
end for
σ ← γ × σ
σ ← σ + R(s′)
� ← � + P′(s′) × σ

end for
� ← γ × �
� ← � + R(s)
return �

Algorithm 2 Compute actions for explanation
minval ← ∞
for all a ∈ A do

x[a] ← 0
for all ai ∈ A \ π(s) do

� ← Vπ
2 (s, π(s), a) − Vπ

2 (s, ai, a)
if � < 0 then

x[a] ← x[a] +1
end if

end for

if x[a] < minval then
minval ← x[a]

end if
end for

E ← ∅
for all a ∈ A do

if minval = x[a] then
E ← E ∪ {a}

end if
end for

return E

According to the classification scheme presented by Tintarev and Masthoff [2011],
our method of explanation is knowledge- or utility-based. The user’s needs are en-
coded in the utility function, and our explanation is a decomposition of the expected
utility by action. We have used a single, simple utility function for this example, but
the explanation system does not rely on that—or any particular—utility function.
We assume that, when it is deployed, the utility function will be personalized. It is
likely that, with not too much additional work, we would be able to use the preference
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representation to further refine our explanations. For instance, if the planning system
were to elicit preferences in the form of an additive independent function, we should
be able to leverage that independence to describe individual subgoals, and further cus-
tomize the explanations that are generated.

4.2. Case-Based Explanation

While the utility function which specifies the optimal MDP policy is often derived from
statistical relationships in past data, the arguments generated from that policy, in
general, look forward from the current state. In our system, the policy-based argument
attempts to convince the user that the recommended action will improve the expected
utility of some action in a future time step.

However, we would also like to argue, if possible, that the immediate outcomes
of the action recommended in the current state are desirable based on the current
variable assignments (in our domain, this represents past academic performance).
While the MDP model allows us to assign a probability to each possible outcome of the
recommended action, that is precisely the type of argument which our system eschews.
Instead, to make an argument in this form, we employ case-based explanation (CBE),
which uses data about past performance in the same domain in order to explain
conclusions at the present state. It is advantageous because it uses real evidence,
which enhances the transparency of the explanation, and analogy, a natural form of
explanation in many domains [Nugent et al. 2009].

This argument from past data combined with our MDP-based argument from pre-
dicted future outcomes creates a strong complete argument for the action recom-
mended by the optimal policy. In the computer science domains, our case base consists
of 2, 693 distinct grade assignments in 6 distinct courses taken by 955 unique students.
In the psychology domain, our case base consists of 11, 117 distinct grade assignments
in 7 distinct courses taken by 6, 395 unique students. This anonymized information
was provided by the University of Kentucky, about all courses taken by students who
began their academic tenure between 2001 and 2004.

In a typical CBE system, such as KLEF [Nugent et al. 2009], a fortiori argumenta-
tion is used in the presentation of individual cases. This presents evidence of a strong
claim in order to support a weaker claim. In terms of academic achievement, one could
argue that if there is a case of a student receiving a “Pass” in PDPS and a “Good” in
SE, then a student who has received a “Good” in PDPS should expect to do at least
as well.

In our system, a single case takes the form of: scenario1 → action → scenario2,
where a scenario is a partial assignment of state variables, and scenario2 occurs im-
mediately after action, which occurs at any time after scenario1. In particular, we treat
a single state variable assignment, followed by an action, followed by an assignment
to single state variable, usually differing from the first, as a single case. For example,
a student having received an A in ICP and a B in PDPS in a later semester com-
prises a single case with scenario1 = {var ICP = Good} → action = {take PDPS} →
scenario2 = {var ICP = Good, var PDPS = Good}2. If the same student had also taken
CALC2 after having taken ICP, that would be considered a distinct case.

In general, the number of state variables used to specify a case depends on the
method in which the case base is used. Two such methods of using a case base are
possible: case aggregation and case matching [Aamodt and Plaza 1994]. When using
case aggregation, which is better suited to smaller scenarios, the system combines all
matching cases into relevant statistics in order to generate arguments. For example,

2Recall from Section 3 that we made the choice to represent both A and B with “Good” and C with “Pass”.
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case aggregation in our system would report statistics on groups of students who have
taken similar courses to the current student and explain the system recommendation
using the success or failure of these groups of students. When using case matching,
a small number of cases, whose scenarios match the current state closely, would be
selected to generate arguments [Nugent et al. 2009]. Case matching methods are more
suited to larger scenarios, and ideally use full state assignments [Aamodt and Plaza
1994]. For example, case matching in our system would show the user one or two
students who have identical or nearly identical transcripts and explain the system
recommendation using the selected students’ transcripts.

Privacy concerns aside, our system uses a case aggregation method, as our database
does not have the required depth of coverage of our state space. There are some states
which can be reached by our MDP which have few or no cases. With a larger case base,
greater specificity in argumentation is possible by considering an individual case to be
the entirety of a single student’s academic career. However, presenting individual cases
still requires that the case base be carefully pruned to generate relevant explanations.
Our system instead presents explanations based on statistics generated dynamically
from all relevant cases. A case is considered relevant if it consists of an assignment
to a variable which matches an assignment in the user’s current state as well as an
assignment to the variable or variables affected by the action recommended in the
current state. We select the relevant cases and compute the likelihood of a variable
assignment with higher immediate utility under a given action. This method allows
more freedom to chose the action for which we present aggregated statistics; the sys-
tem can pick the most convincing statistics from the set of all previous user actions
instead of attempting to match individual cases.

We separate this method from the explanation system in order to maintain domain
independence. This is done with a separate configuration file, called a concept base,
used to store any domain-specific information. Our method accomplishes the selection
of relevant cases in a domain-independent way using the ordered variable assignments
stored in the concept base. In our system, there is a single required component of the
concept base which must be defined by the system implementer; an ordering in terms
of utility over the assignments for each variable in the factored utility function, with an
extra marker for a valueless assignment that allows us to easily generate meaningful
and compelling case-based explanations. The mapping could also be computed from
the model on start-up, but explicitly enumerating the ordering in the concept base
allows the system designer to tweak the case-based explanations in response to user
preferences by reordering the values and repositioning the zero-value marker.

For a given state, s, for each variable vi affected by π(s), we first consider the naı̈ve
distribution, 	(vi), over the values of vi from cases in the database. For example, sup-
pose that a student is in a state such that var ICP = Good, var CALC2 = Good, and
π(se) = act PDPS. Since act PDPS influences only var PDPS, we must generate a
naı̈ve distribution, 	(var PDPS). In this particular example, the zero-value marker
over the ordered variable assignments is placed between “Poor” and “NotTaken.” Even
though both values are not rewarded in our model, we would like to include cases
which correspond to students who have taken a course and failed. Thus, if 650 cases
are found such that var PDPS 
= NotTaken, with 300 “Good,” 250 “Fair,” and 100 “Poor,”
	(var PDPS) = [0.47, 0.38, 0.15].

We then compute a conditional distribution, 	(vi | vj), for each other value vj in s.
If, in the case base, 200 students had var ICP = Good and var PDPS 
= NotTaken
with 130 “Good” assignments, 40 “Fair,” and 30 “Poor,” 	(var PDPS | var ICP =
Good) = [0.65, 0.20, 0.15]. Additionally, if 150 students had var CALC2 = Good and
var PDPS 
= NotTaken with 100 “Good,” 30 “Fair,” and 20 “Poor,” we would compute
	(var PDPS | var CALC2 = Good) = [0.67, 0.20, 0.13]. Note that we did not compute
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	(var PDPS | var DM = NotTaken) because of the placement of the zero value marker.
We would, however, still like to present statistics such as 	(var ICP | var ICP = Poor)
to account for students who may fail a course and wish to retake it. The zero value
marker gives the system the flexibility to consider certain interesting variable assign-
ments while neglecting other cases which would otherwise be equivalent with respect
to the utility function.

For each conditional distribution, we examine the expected utility of the explana-
tion action according to the distribution, and compare each with the expected utility
under the naı̈ve distribution. The conditional distribution which predicts the greatest
increase in expected utility over the naı̈ve distribution is then chosen to be used
for explanation. Returning to the given example, since values of “Good,” “Fair,” and
“Poor” in our model are 4.0, 2.0, and 0.0 respectively, the naı̈ve distribution predicts
an immediate utility of 2.64, while the conditional distributions predict utilities of
3.0 and 3.08.

Conditional distributions which predict a decrease in expected utility compared to
the naı̈ve distribution are not considered. Since only the explanation action is con-
sidered in the current state, and only distributions which increase the probability of
assignments with positive utility are considered, this method cannot produce explana-
tions which conflict with the policy-based explanation component.

In the given example, the conditional distributions indicate that a value of
var CALC2 = Good increases the utility of taking action act PDPS, and moreoever,
increases the utility more than any other assignment in the current state. The gener-
ated explanation primitive is therefore as follows.

Our database indicates that with either var ICP = Good or var CALC2 =
Good, you are more likely to receive var PDPS = Good in the future.

Though we do not present individual cases, the explanation is generated from in-
formation contained in the cases. Regardless of the number of cases used to create
a statistic, we believe that we have preserved the core method of CBE: explaining a
solution in terms of past solutions to similar problems. We chose to aggregate case
information because, in practice, it simplified an incredibly rich topic (preparing and
presenting a database of cases). While this is a departure from what is traditionally
considered to be case-based explanation, we believe that the terminology is suitable.
However, it is important to make a clear distinction between case-based reasoning in
the general sense and the specific implementation which we chose to use to present
case information.

4.3. Time to Graduation

Many of the subjective responses to our system in the user study (see Section 6.1)
asked specifically for information about how long it would take to graduate from the
current state, and how the recommended action would help them towards that goal. In
order to reason about time to graduation, we must first discuss how graduation, and
time to graduation, are represented in our domains. For CS and Psychology minors;
graduation is represented by any scenario (partial assignment of state variables) in
which the student has achieved a Good or Pass in the required courses. Our concept
base also allows us to give a meaningful name to each explanation goal, so that we can
use the word “graduation” rather than enumerating the variable assignments that
comprise the individual scenarios. This grouping of explanation goal scenarios into
explanation goals via the concept base also allows us the flexibility to define multiple
explanation goals. For example, graduation with a passing GPA and graduation with
a good GPA could be considered separately.
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For example, the explanation goal with the label “graduation” in the CS minor do-
main is given by the set of scenarios {var ICP = Good or var ICP = Pass, var PDPS =
Good or var PDPS = Pass, var SE = Good or var SE = Pass, var DM = Good or
var DM = Pass, var ALGO = Good or var ALGO = Pass}. Another possible explana-
tion goal could be labeled “a passing grade in Algorithm Design and Analysis”, and
would consist of scenarios {var ALGO = Good or var ALGO = Pass}. For the sake of
brevity the method will be presented using the latter scenario.

One method of producing a “time to goal” explanation would be to use a deterministic
version of the domain and an optimal deterministic planner or other search algorithm
to find the minimal time to a goal. There are at least two potential issues with this
method. First, we are concerned—based on years of interactions with students—that
it will be interpreted as a promise, namely, “you will graduate in four semesters”.
Second, building a deterministic model and including search or planning code in our
system would require significant overhead, especially for an approach that we believe
is likely to be misleading. We therefore would like to consider an approach which is
similar to our other methods, leveraging either the model and optimal policy or the
case base.

A model-based explainer could be used to generate an argument of the form, “There
is a 45% chance of achieving var ALGO = Good in four or fewer steps”. However, the
results of our user study indicate that over half of students surveyed consider how past
students have performed in their situation when selecting courses (see Section 6.1). In
light of these results, we feel that arguments generated from the case base may be
more convincing to our target users. Note that only certain types of case bases, specif-
ically those which consist of inherently sequential cases and also include temporal
information, will have the information required to implement “time to goal” measures.
A generic case base can still be used to generate information about whether an expla-
nation goal was attained from the current state, or to compute the proportion of past
users who attained a given explanation goal from the user’s current state.

When temporal information is included, there is a relatively simple algorithm: con-
struct a career for every unique student in the case base, and check each career against
the assignments to the user’s current state and the set of goal scenarios to be consid-
ered for explanation. In this context, a career refers to the complete set of cases for a
single unique student. This is more properly a redefinition of a single case to encom-
pass an entire student’s academic career, but for the sake of clarity, we will continue
to refer to this set as a career. In the worst case, every case of every career must be
checked against the user’s current state, giving an algorithm which is linear in the
number of cases. Constructing careers is also linear in the number of cases, though
in practice, precomputing careers from the case base does offer an improvement in
performance over reconstructing careers for each new explanation.

In our case base, the last time step in which a career shares any variable assignment
with the user can be taken as the time step before the current state, while the first time
step in which the career satisfies any one of the set of goal scenarios can be taken as the
time step after which the explanation goal of which the scenario is a part is achieved.
For example, if the user is in a state with var ICP = Good, var PDPS = Good, and we
are considering an explanation goal

{
var ALGO = Good, var ALGO = Pass

}
, and we

find a career in the case base where var PDPS = Good was accomplished in time
step 4, while var ALGO = Good was accomplished in time step 7, the career can
be said to represent the accomplishment of the explanation goal, “a passing grade in
Algorithm Design and Analysis,” from the current state in three time steps. Similarly,
a career that has var PDPS = Good in time step 4 and var ALGO = Pass in time step
8 can be said to represent the accomplishment of the same explanation goal in four
time steps.
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Once again, we choose to aggregate statistics from the case base rather than present
individual cases, so each career in the case base will be checked against the user’s
current state.

If we have found ten careers in the case base which accomplish any one of the set of
goal scenarios, broken down as five careers of three time steps and five careers of four
time steps, we may say that the explanation goal was achieved, on average, in four or
fewer time steps. Additionally, if we are recommending that the user take act SE, and
the careers in the case base have var SE = Good in the first time step after the time
step matching the current state (time step 5 in the given example), we may generate
an explanation of the following.

Past students have taken Software Engineering and accomplished their goal
of achieving a passing grade in Algorithm Design and Analysis in four or
fewer semesters from the current state.

This is the strongest form of this type of explanation, because we have cases that
exactly match the user’s current state and recommended action. It is also possible that
there is not an exact match in the case base. In this case, we may relax the condition
that careers have the recommended action in the appropriate timestep and generate
an explanation of the following form.

Past students accomplished their goal of achieving a passing grade in
Algorithm Design and Analysis in four or fewer semesters from the current
state.

While this explanation does not recommend the optimal action, it does convey in-
formation about the time to the goal scenario, demonstrating to the user that we are
considering their specific goals.

It should be possible to extend this approach to generic subgoals, however care must
be taken in choosing subgoals for explanation. Because the optimal policy is specific
to the utility function used during the planning phase, only certain subgoals, possibly
only those which are scenarios with high utility, can be explained with reference to the
policy, that is, using the stronger form of the argument. This is a possible direction for
future research, as is validating the efficacy of the case-based “time to goal” method
via user studies.

While this particular explanation method relies on features of the case base which
may not be available in all domains, it was motivated by user study data which is
necessarily domain-specific. It is not always possible, or even advisable, to preserve
domain independence for its own sake. A system which is meant to be deployed should
take into account features of the domain which allow it to satisfy the needs of its users.
While the bulk of our argumentation methods were developed with domain indepen-
dence in mind, we nevertheless remain open to including domain-specific explanation
modules, such as this one, when the use case arises.

4.4. English-Language Template Populator

In explanations generated by our system, particular emphasis is placed on display-
ing probabilities in terms that are more comfortable to the target user base, under-
graduate students. A verbal scale has inherent problems. In medical decision making,
Witteman et al. [2007] found that experienced doctors were more confident using a
verbal, rather than numeric, scale. Renooij [2001] reports large inter-subject variabil-
ity of the numerical values assigned to verbal expressions. However, Renooij found
that there was a high level of inter-subject consistency and intra-subject consistency
over time in the ordering of such verbal expressions. Additionally, numerical interpre-
tations of ordered lists of verbal expressions were less variable than interpretations
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of randomly ordered lists [Renooij 2001]. Thus, our explanations replace numerical
probabilities with a system of intuitively ordered adverb phrases: very likely (p > 0.8),
likely (p > 0.5), unlikely (p < 0.5), and very unlikely (p < 0.2). Since words at the
extremes of the scale are less likely to be misinterpreted, nearly certain (p > 0.95) and
nearly impossible (p < 0.05) could also be added to the scale.

Though these cutoffs work well for expressing the probabilities of state changes
predicated on some action in an MDP model, they are not well suited for expressing
the probability of a particular variable assignment with some underlying distribution.
In this case, our system simply uses less likely and more likely for effects which cause
the probability of the particular value to be less than or greater than the probability
in the naı̈ve distribution.

While MDP-based explanations can be generated in a domain-independent way, pro-
ducing domain-independent natural language explanations is more problematic. The
only domain semantics available from the MDP are the names of the actions, vari-
ables, and values. These labels, however, tend to be abbreviated or otherwise distorted
to conform to technical limitations. Increasing the connection between the language
and domain increases the user trust and relation to the system by communicating in
language specific to the user [Murray and Häubl 2008; Sinha and Swearingen 2002].
Our system uses a relatively simple concept base which provides mappings from vari-
able names and assignments to noun phrases, and action names to verb phrases. This
is an optional system component; the domain expert should be able to produce this
semantic mapping when constructing the MDP model.

All of these mappings are stored in the concept base as optional components. The
template arguments that are populated by the explanation primitives are also stored
in the concept base. Each explanation module only computes the relations between
variables. It is up to the interface designer to establish the mappings and exact word-
ings in the concept base. We allow for multiple templates and customizable text, based
on state or variable assignment, to be stored in the concept base. This flexible compo-
nent allows for as much or as little domain tailoring as is required by the application.

5. COMPARISON TO EXISTING SYSTEMS

The work reported here uses fully observable, factored MDPs [Boutilier et al. 1999].
The fundamental concepts used by our system are generalizable to other MDP for-
malisms; we choose the factored MDP representation as it will allow us to expand our
system to scenarios where we recommend a set of actions per time step.

Our system differs from existing but similar systems such as the one designed by
Elizalde et al. [2009] in several important ways. First, while an extensive knowledge
base will improve the effectiveness of explanations, the knowledge base required by
our system to generate basic explanations is minimal, and limited to variables which
can be determined from the model itself. Second, our MDP-based module decomposes
recommendations from the MDP in a way that is more psychologically grounded in
many domains, focusing on user actions instead of variables [Frederick et al. 2002].

Additionally, Bohnenberger et al. used a combination of MDP plans and graphical
explanations to help shoppers move through a shopping mall [Bohnenberger et al.
2005]. This system was explaining the plan as its primary user interface and was not,
necessarily, attempting to justify why the plan was the best. Users were given several
alternative routes to select from in order to provide confidence in the system itself.

We designed with a “most convincing” heuristic; we attempt to select the factual
statements and word framings that will be most influential to our target user base.
This is in contrast to other, similar, systems which focus on a “most coverage” heuris-
tic, for instance, Khan et al.’s minimal sufficient explanation (MSE) system [Khan
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et al. 2011]. A most coverage heuristic focuses on explaining a minimal level of util-
ity that would be accrued by the optimal policy (see Section 2.3 for a more detailed
explanation). While this method is both mathematically grounded and convincing to
individuals who understand probabilistic planning, our intuition is that it is not as
convincing to the average individual. The MSE algorithm also leverages the concept
of decomposing the total utility into individual scenarios, each with their own utility,
but the MSE algorithm explains those scenarios in terms of occupancy frequency. Our
approach to this problem is similar in spirit, though much less complete. While the
MSE algorithm constructs scenarios with high utility on the fly, we will encode an
explanation goal, a set of goal scenarios for explanation, in the concept base.

6. DISCUSSION AND USER STUDY

Our system successfully generates conversational English explanations in real time
using domain-independent methods, while incorporating domain-specific language for
the final explanation. The concept base allows designers to insert custom language as a
preamble to any or all of the recommendations. This allows the user interface designer
flexibility as to how much domain, modeling, and computational information to reveal
to the end user.

The worst-case runtime complexity of our system, to generate an explanation for a
given state, is O(|S|2|A|2), where S is the set of all states and A is the set of actions. Al-
most all the computational burden is experienced when computing the AFDVs. These
could, for very large domains, be precomputed and stored in a database if necessary.
This complexity is similar to the computational requirements imposed by other MDP
explanation systems [Khan et al. 2011] and is easily within the abilities of most mod-
ern systems for domains with several thousand states.

Our concept base includes text stating that recommendations depend on grades (out-
comes) the student has received previously, and on the user’s preferences. In the cur-
rent format we assume the user’s preferences are for a high GPA and to graduate as
soon as possible. In many applications we expect that users do not want to know how
every decision in the system is made; we are building convincing arguments for a gen-
eral population, not computer scientists. While technically inclined people may want
more information regarding the model construction and planning, decision-theoretic
planning techniques are not necessarily well understood by our target users. Thus,
our example explanation does not explain or exhibit the entire policy. The important
concept for our end users is not the mathematical structure of a policy, but that future
advice will depend on current outcomes. After language substitution, the generated
explanations look like this.

The recommended action is taking Introduction to Program Design and
Problem Solving, generated by examining possible future courses. It is the
optimal course with regards to your current grades and the courses avail-
able to you. Our model indicates that this action will best prepare you for
taking Introduction to Software Engineering and taking Discrete Mathe-
matics in the future. Additionally, it will prepare you for taking Algorithm
Design and Analysis. Our database indicates that with either a grade of A
or B in Introductory Computer Programming or a grade of A or B in Cal-
culus II, you are more likely to receive a grade of A or B in Introduction to
Program Design and Problem Solving, the recommended course.

This form of explanation offers the advantage of using multiple approaches. The first
statement explains the process of generating an MDP policy, enhancing the trans-
parency of the recommendation in order to gain the trust of the user [Sinha and
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Swearingen 2002]. It makes clear that the planning software is considering the long-
term future. The second statement relies solely on the optimal policy and MDP model.
It offers data about expected future performance in terms of the improvement in value
of possible future actions, the AFDVs, which are computed using an optimal policy
(which maximizes expected long-term utility). This part of the explanation focuses on
the near future to explain actions which may only be preferable because of far fu-
ture consequences. This shift in focus, from far to near, leverages the user’s inherent
bias towards wanting to realize rewards as soon as possible [Frederick et al. 2002].
The last statement in the explanation focuses on the student’s past performance in or-
der to predict performance at the current time step and explains that performance in
terms of variable assignments. This statement makes an analogy between the user’s
performance and the aggregated performance of past students. Argument from anal-
ogy is very relevant to our domain: academic advisors often suggest, for example, that
advisees talk to students who have taken the course from a particular professor. Addi-
tionally, the case-based explanation module can be adapted to take into account user
preferences, and therefore make more precise analogies.

Our domain sits at an interesting intersection of persuasion and explanation. We
want to provide the users with enough information to make informed decisions and
hope that they make ones that are optimal. There are some cases, such as convincing
mentally disabled people to wash their hands [Hoey et al. 2012], where persuasion
is the main driver of explanation. In our case we hope that by providing an honest
explanation that is geared towards highlighting why a recommended course of action
is beneficial, students will choose the course of action we have laid out for them. We
want students to have an appropriate level of confidence in the recommended action
as this may help them to stick to decisions when the going gets rough.

6.1. User Study

We conducted a large user study encompassing both domain experts (advisors) and
target users of our system. Our study goals were manifold. We compare the advice
generated by our system and its “most convincing” approach to other systems which
use a “most coverage” (with respect to utility) approach. We investigate when and
where users and experts would use our system as well as subjective user and expert
assessments of our system on various features. Finally, we attempt to understand what
factors users and experts would want to add to our system.

We surveyed 65 students enrolled in introductory computer science courses. These
courses are open to all students, so a variety of majors are represented including
computer science, computer engineering, electrical engineering, physics, math, and
mechanical engineering. We also surveyed 130 students enrolled in introductory psy-
chology courses. Again, these courses are open to all students and the majors of the
students surveyed included psychology, biology, social work, family sciences, and un-
decided majors. This variety of majors and focuses allows us to make more general
statements about the types of advice that students with different training would pre-
fer. We surveyed students about additional questions regarding their perceptions of the
advising process and specific factors affecting their decisions. These additional ques-
tions are interesting to practitioners and educators who seek to better understand the
student mindset. We do not provide a full analysis of the survey results in this article.
Instead, we are focused on the effectiveness of our system from a software usability
perspective [Wickens et al. 1998; Wohlin et al. 2000] and we refer the reader to our
other work on the topic, currently in preparation [Mattei et al. 2012].

We also conducted a survey of 10 advisors in order to gain perspective on how do-
main experts feel about our system and to validate our results against their advice.
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Table I. System Output Comparison

Our System MSE Based System

The recommended action is taking Introduction to
Program Design and Problem Solving, generated
by examining possible future courses. It is the op-
timal course with regards to your current grades
and the courses available to you. Our model in-
dicates that this action will best prepare you for
taking Introduction to Software Engineering and
taking Discrete Mathematics in the future. Addi-
tionally, it will prepare you for taking Algorithm
Design and Analysis. Our database indicates that
with either a grade of A or B in Introductory Com-
puter Programming or a grade of A or B in Calcu-
lus II, you are more likely to receive a grade of A or
B in Introduction to Program Design and Problem
Solving, the recommended course.

Action TakeCS343 & CS448 is the best action
because: It is likely to take you to
CoursesCompleted = 6, TermNumber = Final
about 0.86 times, which is as high as any other
action.

Note: Side by side comparison of explanations generated by our system and example explanation taken
verbatim from Khan et al.’s MSE based system [Khan et al. 2011].

The advisors were computer science faculty advisors, general College of Engineering
advisors, and general College of Arts and Sciences advisors.

6.1.1. Users. We have data from 195 students from multiple classes and majors. Each
student was asked a variety of questions about their GPA, major, and overall factors
that they considered when receiving course selection advice. We were unable to have
each student come into our lab and interact with the system individually so we gen-
erated paper surveys that were handed out to students in a variety of classes. In our
paper questionnaires for each of computer science (CS) and psychology (PSY), we gen-
erated two fictional students. Both students are about half way through completing a
minor in their respective course of study. One student is doing very well (about a 3.5
GPA) while the other student is struggling (2.3 GPA). For each treatment our system
generated advice for the student given their progress in the degree and we generated
explanations based on the minimal sufficient explanation (MSE) algorithm presented
by Khan et al. [2011]. The wording for Khan et al.’s MSE explanation is taken verbatim
from their published study, the numbers are calculated for our domain. An example of
each type of explanation is given in Table I.

Table I illustrates the dichotomy of abstraction levels in the explanations gener-
ated by the two systems. Both approaches are mathematically correct. However, in a
user-facing system, the way that the advice is framed is nearly as important for achiev-
ing the desired outcome of explaining or convincing the user of the optimality of the
recommendation, as distrust and misunderstanding are two of the most often user
cited reasons for not following a recommended plan or action [Murray and Häubl 2008].
Therefore we attempt to compare perceptions of the given advice. We believe that the
use of appropriate language is a crucial feature in explanation systems; mathematical
correctness is not enough. An attempt could be made to modify the language in the
advice generated by the MSE system in order to equalize as many factors as possible,
however, we felt it was more appropriate to use the explanations as published [Khan
et al. 2011].

A full example of the survey instrument is available in the Appendix. We generated
two versions of our survey for each minor (4 total versions for the students): in the
first version our system presented a recommendation for the high achieving student
and MSE advice for the struggling student, while in the second version of the survey
the advice was switched (so our system would explain the struggling student). The
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Table II. Summary of User Study Results

Metric Argument Approach MSE Approach

CS Group

More Convincing 85.7% 14.3%
Correctness Rating Median 4/5 4/5

Clarity Rating Median 4/5* 2/5
Convincingness Rating Median 3/5* 2/5

PSY Group

More Convincing 89.5% 10.5%
Correctness Rating Median 4/5* 3/5

Clarity Rating Median 4/5* 2/5
Convincingness Rating Median 4/5* 3/5

All Responses

More Convincing 88.6% 11.4%
Correctness Rating Median 4/5* 3/5

Clarity Rating Median 4/5* 2/5
Convincingness Rating Median 4/5* 3/5

Note: Median scores for the systems divided into the CS survey group, PSY survey group, and
all respondents. Entries denoted with a (*) are statistically significant at α = 0.05.

students for each major were split randomly into two groups and only saw one version
of the survey. We chose this method in an attempt to control for possible bias as we
felt that students may rate the positive advice as better since positive framings are
generally preferred.

While none of the students in our survey were receiving advice specifically for their
situation, asking users to put themselves in a closely related persons’ shoes should
preserve the results of our survey and is a common practice in human-factors and
psychology research [Wickens et al. 1998]. The questionnaire presents the subject with
a fictional student and gives the subject the full transcript of the fictional student, a
listing of all the courses (with descriptions) required for a minor in the particular field
(PSY or CS), the high school GPA of the fictional student, and how many semesters
they had been attending college.

Since we controlled the courses where we distributed the surveys, we selected
courses where we would have a high density of students who were about halfway
through the coursework for a minor in the respective department. From the demo-
graphic portions of the survey we know that most (more than 75%) of the students
who took the survey in CS and PSY were within 2 semesters (plus or minus) of the
fictional students they were answering questions about. While the students who
completed the survey had, in general, higher GPA’s than the fictional poor performing
student, many had GPA’s close to the fictional high achieving student. Since the
students were answering questions about fictional students, who were very much like
them, we feel that the students who completed our survey were in a position to judge
all of the properties of the system that we were testing. After the students received
advice from the system, they were asked a variety of follow-up questions about their
overall preference, additions to the system they would like to see, and how they would
use the system if it was provided to them.

When asked which system they felt to be more convincing, our core metric, 36 of 42
(85%) of students receiving the CS version selected our system and 111 of 124 (90%)
of students receiving the PSY version selected our system. We asked the students to
select some key factors they used when making decisions about what courses to take in
future semesters. We allowed the students to select multiple features or add their own
to this question. Validating our reliance on analogy as an argumentation method, 38
of 62 (61%) in the CS group and 65 of 130 (50%) in the PSY group indicated that they
considered the performance of past students in their situation. Overall, 47 of 62 (75%)
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in the CS group and 104 of 130 (80%) in the PSY group indicated that they considered
how past students in their situation performed and/or how a course would prepare
them for future courses to be important when making a decision. The students also
seemed to be very goal focused: 42 of 62 (68%) in the CS group and 100 of 130 (76%)
in the PSY group responded that course requirements were an important factor in
deciding what courses to take. While our system does not explicitly detail the course
requirement structure we did verify that our two chosen methods, analogy and short-
term utility, play a significant role in communicating with users.

After reading the advice from each system we asked the students to rate the advice
on a Likert scale from 1 to 5 on the factors of correctness, convincingness, and clarity
[Wickens et al. 1998]. For all the following analysis we compared the groups and sys-
tems with Mann-Whitney U tests, which assumes equal variances but ordinal data,
and used α = 0.05 as is standard in software testing [Wohlin et al. 2000] and higher
education surveys [de Winter and Dodou 2010]. For all the questions, for both systems,
and both groups, there was no statistically significant difference between the median
responses based on what was being explained. This means that there was likely no
effect on the students’ perception of our system or the MSE based system because the
system was explaining a good or a bad student. This is a positive result as we would
like our system to be able to work with students who are doing well and students who
are struggling. A summary of our analysis is shown in Table II.

For the correctness question, there was no significant difference between the CS and
PSY group for our system (NCS = 49, NPSY = 122, mean rank of 75.82 for CS and
90.09 for PSY; U = 3488, Z = −1.988, and p = 0.0728) or the MSE explanations
(NCS = 50, NPSY = 115, mean rank of 88.16 for CS and 80.76 for PSY; U = 2617,
Z = 0.9379, and p = 0.3507). Our system has a somewhat higher variance between
the CS group and the PSY group (σ 2 = 1.022 versus σ 2 = 0.8736) for the correct-
ness score. This trend continues throughout all of our metrics including clarity and
convincingness. We speculate that this is because some of the respondents in the CS
group wanted more technical answers and marked our system down accordingly for
its lack of hard numbers. Over all students our system was given a higher median
correctness score x̃ = 4/5 versus the MSE system x̃ = 3/5 and this was a statistically
significant result (NAA = 171, NMSE = 165, mean rank of 189.96 for our system and
146.26 for the MSE system; U = 17776.5, Z = −4.271, and p = 1.7 × 10−6). Generally,
all students felt the advice generated from the systems to be correct and there were
very few low outlying scores. The mean score for correctness from the PSY group on
our system was slightly higher, x = 4.05, versus the CS group, x = 3.76. In general,
across both systems, the PSY group seemed to express more trust in the computer sys-
tem in general in their written comments than the CS students did. Even when some
of the PSY students seemed to not be able to understand the MSE explanations, they
would label the explanation as correct because, in the words of one anonymous survey
taker, “the computer is probably correct.” This level of trust did not seem to exist in
the CS students as their written comments were more concerned with how the model
was created and what was going on, “under the hood.”

For the question of clarity, there was no significant difference between the CS and
the PSY group for our system (NCS = 49, NPSY = 116, mean rank of 77.11 for CS
and 89.57 for PSY; U = 3424.5, Z = −1.5717, and p = 0.1164) or the MSE based
explanations (NCS = 50, NPSY = 115, mean rank of 78.94 for CS and 84.76 for PSY;
U = 3078, Z = −0.7499 and p = 0.3507). There was a significant difference in the
perceived clarity for our system (x̃ = 4/5) versus the MSE based system (x̃ = 2/5) and
our system was much more preferred overall (NAA = 171, NMSE = 165, mean rank
of 214.90 for our system and 120.42 for the MSE system; U = 22040, Z = −9.1245,
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and p = 2.2 × 10−16). Our use of domain specific knowledge and careful choice of
explanation language was most likely the cause for our systems’ higher clarity score.

Finally, for the question of convincingness, there was no significant difference be-
tween the CS and the PSY group for our system (NCS = 49, NPSY = 116, median
rank of 72.47 for CS and 87.45 for PSY; U = 3358, Z = −1.9223, and p = 0.05449) or
the MSE based explanations (NCS = 50, NPSY = 115, mean rank of 75.17 for the CS
group and 86.40 for PSY; U = 3266.5, Z = 1.4306, and p = 0.1532). We find again a
somewhat high variance between the means for our system between the CS students
and the PSY students (σ 2 = 1.38 versus σ 2 = 0.80). We feel, that for convincingness,
this is a response both to the lack of hard numbers in our system and the more linear
nature of the CS curriculum. Students in the CS minor have a well defined linear se-
quence of courses that they must take and that reinforcing this linearity decreases the
convincingness of our system. Again, there was a statistically significant preference of
students in both groups for our system (x̃ = 4/5) over the MSE based system (x̃ = 3/5),
with our system being rated as more convincing (NAA = NMSE = 165, median rank
of 202.96 for our system and 128.04 for the MSE system; U = 19793.5, Z = −7.3145,
and p = 6.4 × 10−14).

When asked about their possible usage patterns, 37 of 44 (84%) in the CS group
and 142 of 165 (86%) of the PSY group, responded they would use the system at home
before and/or while talking to an advisor. Students were allowed to select multiple
answers to this question to indicate the different possible ways they would use the
system. There was a very small group of students, 7 of 44 (15%) for CS and 27 of 165
(16%) for PSY, that said they would use our system instead of talking to an advisor.
There was also a small group of students, 7 of 44 (15%) for CS and 11 of 165 (9%) of
PSY, who said they would either not use our system or use it for requirements checking
only. When students were asked if they would make use of the advising feature if it was
integrated with our university’s course requirement checking feature, 24 of 44 (55%)
for CS and 88 of 120 (73%) for PSY, responded that they would often or always use the
recommendation feature.

We also asked the students in both categories what additional questions they would
have if they received our advice and how they would make our system better. Of the
students who responded to these question, 38 students in the PSY group and 25 in
the CS group, more than 50% of the students in both groups had questions about
subjective factors of courses. These questions included what the professor was like,
and would taking two certain courses concurrently make for a particularly difficult
semester. They also hinted at individual variation in preferences for number of projects
versus number of exams. At this juncture, our system cannot provide such advice to
students, as it would require abandoning domain-independent methods. The question
of concurrent actions has not been addressed in this system, either in the policies or
the explanations, and is left as a direction for future work.

About 50% of the PSY group and 40% of the CS group wanted to work through
some “what if” scenarios. These included rearranging proposed courses and looking at
different expected time to graduation and other factors. If these users had been able
to interact with our explanation system they could have built and tested these “what
if” scenarios in real time, a true benefit of our system. Since the user study, we have
implemented features that would allow our system to discuss time to graduation (as it
is a definable subgoal within the model).

There was a small fraction, less than 8% of CS students and no PSY students, who
wanted to see more numbers in our system instead of our word explanations. A handful
of students (less than 5%) wanted to know what we meant by “augment.” They asked
for more specific learning factors that a course would improve and how this would
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translate to their future success. Our current model does not deal with identifying
student aptitudes for things like mathematics or reading comprehension. Accounting
for these factors would require a more complicated MDP with explicit modelling of
tested aptitudes, or a partially observable MDP (POMDP) which could infer aptitudes
from student grades. Additionally, about 10% of students in both groups expressed
interest in working through whole plans of study for multiple semesters. These are
interesting extensions to our work and we hope to address them in future versions of
our system.

6.2. Advisors

Our advisor survey covers 10 advisors from several different walks of advising. In-
cluded are several faculty advisors and several advisors who advise students in mul-
tiple areas within a single college. While our smaller sample size does not allow us to
present as a complete a statistical comparison as we would like, we can still draw some
conclusions about how advisors see the role of our system.

The advisor survey differed several key ways from the survey shown in the Ap-
pendix. The advisors were given the student examples as a narrative of a fictional
student including all their grades in the courses they had completed. The advisors
were asked to give advice to these students. The advisors were then shown two new
fictional students and advice generated by our system (no advice from the MSE sys-
tem was included in the advisor study). The advisors were asked to rate the advise
generated by our system across the same set of factors that we used in the student
surveys.

Nearly all advisors, across all categories, saw requirements as the most important
priority when recommending courses to students. This criterion was rated as the first
priority for 9 of 10 advisors surveyed. In stark contrast to the students, 7 of 10 advisors
rated drawing analogy between the current student and past student performance as
the least important aspect of advising. Advisors rated our data as being generally cor-
rect with a median of 4/5 and generally clear with a median of 3/5. The advisors saw
our advice for the struggling student as less clear and less correct because our sys-
tem did not (and could not) engage the student in a discussion about choosing another
major. In fact, when advisors did raise issues about the quality of our advice, it was
generally in response to subjective factors. Advisors felt that our advice, while tech-
nically correct in most instances, left out many important factors that could only be
gleaned and responded to by an in person interview.

The issue of subjective factors was key for the advisors. They felt, “there is no need
to put a computer between two humans that need to communicate.” In our sample,
it was very obvious that advisors were worried that students, if given access to our
system, would skip the person to person advising process in favor of a machine. This
was reflected in that 7 of the 10 advisors said they would never or not often use our
system or recommend our system to students. All three of the advisors who suggested
giving students access to our system did so under the caveat that students should be
required to still meet with a human advisor to clear up any comments or concerns that
the student would have.

6.3. Study Discussion

We feel that our user study was successful in verifying our chosen psychological heuris-
tics and confirming the correctness and clarity of our explanations. However, the ex-
tremely personal nature of advising prompted a somewhat adversarial reaction from
some users and domain experts. We wholeheartedly agree that our system could never
replace actual human contact and we never meant to suggest it would, could, or should.
We would endorse the use of our system in an actual academic setting only as a
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decision support tool; as one component of student advising including career coun-
selling and face-to-face time with caring professionals.

Despite the emotional response, we feel our study validates our overall approach.
Many of the students responded positively to the framing and manner of our advice.
Many even identified our psychological techniques as being what they sought when
asking for advice. We feel that, with our novel use of analogy and focus on immediate
utility, we have created a system that is both flexible and applicable to multiple
domains.

Our study should not be taken as an attempt to demonstrate that the AFDV ap-
proach to generating explanations is superior to the MSE approach. We feel that we
have demonstrated that our approach to framing the explanations is more effective in
all criteria and that we have validated the psychological heuristics which motivated
our particular method of explanation. A direct comparison of the two approaches would
require modification of the explanation language generated by the MSE system so that
the abstraction levels are similar. Such a study may well reveal that the more effective
mode of explanation depends on individual user preferences and ranking of subgoals
within the domain. Indeed, the “time to subgoal” method of explanation which we
added to the system in response to user feedback is more similar in spirit to the MSE
method than the AFDV method, supporting that hypothesis.

Our study was also successful in that it highlighted the need to augment the modes
of interaction between the system and the user. Both the students and the advisors
wanted our system to be more interactive, though in very different ways. The users
of our system wanted to address time to completion of subgoals, which we have since
addressed in our system design. This is in line with the students wanting to manually
check “what-if” scenarios; “if I get an A in this class, what should I do next.” Making the
ability to work through these scenarios easy and intuitive will be a focus of our future
UI design as we have already augmented our system design to compute the results.

The advisors, however, want to see a different kind of interactivity; namely between
the student and the advisor. The most promising approach we could take would be to
leverage our system to identify and refer students to human advisors. In keeping with
the feedback of our surveyed professionals, we do not feel it is in the best interests of
the students to convert our system into a full fledge replacement for advisors. If our
system were deployed on a department or university level we could use it to identify
students who should really meet with an advisor or career counselor. This feature is
already capable of being implemented in our system; we can provide static advice to
classes of students (i.e., those who have a low GPA or fail a certain class). In these
cases our system can give a static piece of advice such as, “please see Dr. X in the
main advising office.” Additionally, we would want to implement some tracking and
reporting function on the back-end of a fully designed system. Note that features such
as these are well outside the scope of our research project and would be more important
if developing the system for actual commercial implementation.

7. CONCLUSION AND FUTURE WORK

In this work we have presented a system and design which generates conversational
English explanations for actions generated by MDPs. This system uses a novel mix
of case-based and MDP-based techniques to generate highly salient explanations. The
system design abstracts the domain-specific knowledge from the explanation system,
allowing it to be ported to other domains with minimal work by the domain expert.
The generated explanations are grounded both psychologically and mathematically
for maximum impact, clarity, and correctness. The system operates in real time and
the specificity of explanations is scalable based on the amount of domain-specific infor-
mation available.
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Automatic planning and scheduling tools generate recommendations that are
often not followed by end users. As computer recommendations integrate deeper
into everyday life it becomes imperative that we, as computer scientists, understand
why and how users implement recommendations generated by our systems. The
framework here starts to bridge the gap between mathematical fundamentals and
user expectations.

Our current model recommends one course at a time. We will be expanding the sys-
tem to include multiple actions per time step. This requires a planner that can handle
factored actions, and requires that we adjust the explanation interface. We expect that
explanations will consist of three parts, not necessarily all present in each response.
The first will answer the question, “Why should I take this particular course/atomic
action?” The second will answer, “Why should I take these two/few courses/atomic ac-
tions together?” And the third will look at the entire set. Answers to the first type of
query will be very similar to what is described here, but will take into account whether
the effects are on simultaneous or future courses. Answers to the second type will build
directly on the information generated to answer the first type. We expect that answers
to “Why should I take this set of courses” will depend on the constraints given on
sets of courses/atomic actions, such as “You are only allowed to take 21 credits per
semester, and your transcript indicates that you/people with records like yours do best
with about 15 per semester.”

Our model based module extracts information from the MDP model and a policy
of recommended actions on that model. Finding optimal policies for factored MDPs
is PSPACE-hard [Mundhenk et al. 2000]. We assumed, in the development of this
system, that the optimal policy is available. Given a heuristic policy, our system will
generate consistent explanations, but they will not necessarily be as convincing. We
would like to extend our work and improve the argument interface when only heuristic
policies are available.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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